深度学习开发环境配置:Ubuntu1 6.04+Nvidia GTX 1080+CUDA 8.0
前提条件,已经安装好了 Ubuntu 16.04 操作系统, 见安装 Windows 10 和 Ubuntu 16.04 双系统
懒人版方法:
1234
apt-key adv --fetch-keys http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pubecho "deb http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64 /" | sudo tee /etc/apt/sources.list.d/cuda.listsudo apt-get updatesudo apt-get -y install cuda-drivers cuda
这个方法会安装稳定版的驱动和CUDA,可能不那么新。
然后开始安装 cuDNN, 先下载 cuDNN 6.0,
wget http://developer.download.nvidia.com/compute/redist/cudnn/v6.0/cudnn-8.0-linux-x64-v6.0.tgz
然后解压到 /usr/local
,
sudo tar -zxf cudnn-8.0-linux-x64-v6.0.tgz -P /usr/local
至此,驱动, CUDA 和 cuDNN都安装完了。
如果你想安装最新版的驱动和最新版的CUDA,那么接着读下去吧。
1. 安装 Nvidia 驱动
123456
sudo add-apt-repository -qy ppa:graphics-drivers/ppasudo apt-get -qy updatesudo apt-get -qy install nvidia-370sudo apt-get -qy install mesa-common-devsudo apt-get -qy install freeglut3-devsudo reboot
注意,一般比较新的主板,默认是UEFI BIOS,默认启用了 Secure Boot,否则开机后登陆不进去。老主板没有这个问题。
2. 安装 CUDA 8.x
去 CUDA 8.x 下载页面,一定要下载 runfile 安装方式的安装包,参考资料里的好几篇都是选择这种方式,貌似 deb包有坑?
12
chmod u+x ./cuda_8.0.27_linux.runsudo ./cuda_8.0.27_linux.run --tmpdir=/tmp
执行后会有一系列提示让你确认,第一个就是问你是否安装显卡驱动,由于前一步已经安装了显卡驱动,所以这里就不需要了,况且 runfile 自带的驱动版本不是最新的。 因此 Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 361.77?
这里选择 no。
1234567891011121314151617181920
Do you accept the previously read EULA?accept/decline/quit: acceptInstall NVIDIA Accelerated Graphics Driver for Linux-x86_64 361.77?(y)es/(n)o/(q)uit: nInstall the CUDA 8.0 Toolkit?(y)es/(n)o/(q)uit: yEnter Toolkit Location [ default is /usr/local/cuda-8.0 ]: Do you want to install a symbolic link at /usr/local/cuda?(y)es/(n)o/(q)uit: yInstall the CUDA 8.0 Samples?(y)es/(n)o/(q)uit: yEnter CUDA Samples Location [ default is /home/programmer ]:
你以为你会成功安装吗?并不是,你一定会碰到一个错误,Installation Failed. Using unsupported Compiler.
,这是因为 Ubuntu 16.04 默认的 GCC 5.4 对于 CUDA 8.x来说过于新了,CUDA 安装脚本还不能识别新版本的 GCC。
看了一下安装日志,解决方案也很简单,加一个 --override
选项,
1
sudo ./cuda_8.0.27_linux.run --tmpdir=/tmp --override
这次可以成功了。
12345678910111213141516171819202122232425
============ Summary ============Driver: Not SelectedToolkit: Installed in /usr/local/cuda-8.0Samples: Installed in /home/programmer, but missing recommended librariesPlease make sure that - PATH includes /usr/local/cuda-8.0/bin - LD_LIBRARY_PATH includes /usr/local/cuda-8.0/lib64, or, add /usr/local/cuda-8.0/lib64 to /etc/ld.so.conf and run ldconfig as rootTo uninstall the CUDA Toolkit, run the uninstall script in /usr/local/cuda-8.0/binPlease see CUDA_Installation_Guide_Linux.pdf in /usr/local/cuda-8.0/doc/pdf for detailed information on setting up CUDA.***WARNING: Incomplete installation! This installation did not install the CUDA Driver. A driver of version at least 361.00 is required for CUDA 8.0 functionality to work.To install the driver using this installer, run the following command, replacing <CudaInstaller> with the name of this run file: sudo <CudaInstaller>.run -silent -driverLogfile is /tmp/cuda_install_6794.logSignal caught, cleaning up
把以下两行加入到 .bashrc
,
12
export PATH=/usr/local/cuda-8.0/bin${PATH:+:${PATH}}export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
安装补丁
12
chmod u+x ./cuda_8.0.27.1_linux.runsudo ./cuda_8.0.27.1_linux.run
测试是否安装成功
最后再来测试一下CUDA,运行:
1
nvidia-smi
结果如下所示:
1234567891011121314151617
+-----------------------------------------------------------------------------+| NVIDIA-SMI 370.23 Driver Version: 370.23 ||-------------------------------+----------------------+----------------------+| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC || Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. ||===============================+======================+======================|| 0 GeForce GTX 1080 Off | 0000:05:00.0 On | N/A || 27% 29C P8 9W / 180W | 515MiB / 8110MiB | 4% Default |+-------------------------------+----------------------+----------------------++-----------------------------------------------------------------------------+| Processes: GPU Memory || GPU PID Type Process name Usage ||=============================================================================|| 0 4761 G /usr/lib/xorg/Xorg 259MiB || 0 5224 G compiz 253MiB |+-----------------------------------------------------------------------------+
再来试几个CUDA例子:
12
cd ~/NVIDIA_CUDA-8.0_Samples/1_Utilities/deviceQuerymake
执行 ./deviceQuery
,得到:
12345678910111213141516171819202122232425262728293031323334353637383940
CUDA Device Query (Runtime API) version (CUDART static linking)Detected 1 CUDA Capable device(s)Device 0: "GeForce GTX 1080" CUDA Driver Version / Runtime Version 8.0 / 8.0 CUDA Capability Major/Minor version number: 6.1 Total amount of global memory: 8110 MBytes (8504279040 bytes) (20) Multiprocessors, (128) CUDA Cores/MP: 2560 CUDA Cores GPU Max Clock rate: 1734 MHz (1.73 GHz) Memory Clock rate: 5005 Mhz Memory Bus Width: 256-bit L2 Cache Size: 2097152 bytes Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384) Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers Total amount of constant memory: 65536 bytes Total amount of shared memory per block: 49152 bytes Total number of registers available per block: 65536 Warp size: 32 Maximum number of threads per multiprocessor: 2048 Maximum number of threads per block: 1024 Max dimension size of a thread block (x,y,z): (1024, 1024, 64) Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535) Maximum memory pitch: 2147483647 bytes Texture alignment: 512 bytes Concurrent copy and kernel execution: Yes with 2 copy engine(s) Run time limit on kernels: Yes Integrated GPU sharing Host Memory: No Support host page-locked memory mapping: Yes Alignment requirement for Surfaces: Yes Device has ECC support: Disabled Device supports Unified Addressing (UVA): Yes Device PCI Domain ID / Bus ID / location ID: 0 / 5 / 0 Compute Mode: < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 8.0, CUDA Runtime Version = 8.0, NumDevs = 1, Device0 = GeForce GTX 1080Result = PASS
再测试试一下nobody:
12
cd ~/NVIDIA_CUDA-8.0_Samples/5_Simulations/nbody/make
执行:
1
./nbody -benchmark -numbodies=256000 -device=0
得到:
12345678910
> Windowed mode> Simulation data stored in video memory> Single precision floating point simulation> 1 Devices used for simulationgpuDeviceInit() CUDA Device [0]: "GeForce GTX 1080> Compute 6.1 CUDA device: [GeForce GTX 1080]number of bodies = 256000256000 bodies, total time for 10 iterations: 2364.286 ms= 277.192 billion interactions per second= 5543.830 single-precision GFLOP/s at 20 flops per interaction
至此,说明 CUDA 8.x 安装成功了。
参考资料
深度学习主机环境配置: Ubuntu16.04+Nvidia GTX 1080+CUDA8.0 Nvidia GTX 1080 on Ubuntu 16.04 for Deep Learning - Changjiang Build Personal Deep Learning Rig: GTX 1080 + Ubuntu 16.04 + CUDA 8.0RC + CuDnn 7 + Tensorflow/Mxnet/Caffe/Darknet - by Guanghan Ning GeForce GTX 1080, CUDA 8.0, Ubuntu 16.04, Caffe文章来源:
Author:soulmachine
link:http://cn.soulmachine.me/2016-08-17-deep-learning-cuda-development-environment/