简单的Spark+Mysql整合开发

    今天简单说下Spark和Mysql的整合开发,首先要知道:在Spark中提供了一个JdbcRDD类,该RDD就是读取JDBC中的数据并转换成RDD,之后我们就可以对该RDD进行各种的操作,该类的构造函数如下:

JdbcRDD[T: ClassTag](
    sc: SparkContext,
    getConnection: () => Connection,
    sql: String,
    lowerBound: Long,
    upperBound: Long,
    numPartitions: Int,
    mapRow: (ResultSet) => T = JdbcRDD.resultSetToObjectArray _)

    参数:

    (1)getConnection 返回一个已经打开的结构化数据库连接,JdbcRDD会自动维护关闭。
 (2)sql 是查询语句,此查询语句必须包含两处占位符?来作为分割数据库ResulSet的参数,例如:"select title, author from books where ? < = id and id <= ?"
 (3)lowerBound, upperBound, numPartitions 分别为第一、第二占位符,partition的个数。例如,给出lowebound 1,upperbound 20, numpartitions 2,则查询分别为(1, 10)与(11, 20)
 (4)mapRow 是转换函数,将返回的ResultSet转成RDD需用的单行数据,此处可以选择Array或其他,也可以是自定义的case class。默认的是将ResultSet 转换成一个Object数组。

    下面是动手实践,我的开发环境是:

    虚拟机CentOs7系统,IDEA,JDK8,Scala 2.11,Spark 2.0.1,一些基本环境问题这里就不再叙述了。

    本人使用的是maven,创建maven项目,初始化并添加依赖,下面是pom.xml:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
  <modelVersion>4.0.0</modelVersion>
  <groupId>JdbcRdd</groupId>
  <artifactId>Demo</artifactId>
  <version>1.0-SNAPSHOT</version>
  <inceptionYear>2018</inceptionYear>
  <properties>
    <scala.version>2.11.8</scala.version>
  </properties>

  <repositories>
    <repository>
      <id>scala-tools.org</id>
      <name>Scala-Tools Maven2 Repository</name>
      <url>http://scala-tools.org/repo-releases</url>
    </repository>
  </repositories>

  <pluginRepositories>
    <pluginRepository>
      <id>scala-tools.org</id>
      <name>Scala-Tools Maven2 Repository</name>
      <url>http://scala-tools.org/repo-releases</url>
    </pluginRepository>
  </pluginRepositories>

  <dependencies>
    <dependency>
      <groupId>org.scala-lang</groupId>
      <artifactId>scala-library</artifactId>
      <version>${scala.version}</version>
    </dependency>
    <dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-core_2.11</artifactId>
      <version>2.0.1</version>
    </dependency>
    <dependency>
      <groupId>mysql</groupId>
      <artifactId>mysql-connector-java</artifactId>
      <version>5.1.25</version>
    </dependency>
  </dependencies>

  <build>
    <sourceDirectory>src/main/scala</sourceDirectory>
    <testSourceDirectory>src/test/scala</testSourceDirectory>
    <plugins>
      <plugin>
        <groupId>org.scala-tools</groupId>
        <artifactId>maven-scala-plugin</artifactId>
        <executions>
          <execution>
            <goals>
              <goal>compile</goal>
              <goal>testCompile</goal>
            </goals>
          </execution>
        </executions>
        <configuration>
          <scalaVersion>${scala.version}</scalaVersion>
          <args>
            <arg>-target:jvm-1.5</arg>
          </args>
        </configuration>
      </plugin>
      <plugin>
        <groupId>org.apache.maven.plugins</groupId>
        <artifactId>maven-eclipse-plugin</artifactId>
        <configuration>
          <downloadSources>true</downloadSources>
          <buildcommands>
            <buildcommand>ch.epfl.lamp.sdt.core.scalabuilder</buildcommand>
          </buildcommands>
          <additionalProjectnatures>
            <projectnature>ch.epfl.lamp.sdt.core.scalanature</projectnature>
          </additionalProjectnatures>
          <classpathContainers>
            <classpathContainer>org.eclipse.jdt.launching.JRE_CONTAINER</classpathContainer>
            <classpathContainer>ch.epfl.lamp.sdt.launching.SCALA_CONTAINER</classpathContainer>
          </classpathContainers>
        </configuration>
      </plugin>
    </plugins>
  </build>
  <reporting>
    <plugins>
      <plugin>
        <groupId>org.scala-tools</groupId>
        <artifactId>maven-scala-plugin</artifactId>
        <configuration>
          <scalaVersion>${scala.version}</scalaVersion>
        </configuration>
      </plugin>
    </plugins>
  </reporting>
</project>

    新建scala的Object类,如下:

package JdbcRdd

import java.sql.DriverManager

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.rdd.JdbcRDD

object SparkToJdbc {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("mysql").setMaster("local")
    val sc = new SparkContext(conf)
    val rdd = new JdbcRDD(
      sc,()=>{
        Class.forName("com.mysql.jdbc.Driver").newInstance()
        DriverManager.getConnection("jdbc:mysql://连接的IP:3306/连接的数据库名", "用户名", "密码")
      },
      "SELECT CATEGORY FROM nyw_knowledges WHERE COMPANY_CODE >= ? AND COMPANY_CODE <= ?",
      1000, 1200, 3,
      r => r.getString(1)).cache()

    val rd = rdd.filter(_.contains("咨询")).count()
    println(rd)

    sc.stop()
  }
}

    这里基本的代码就这些,连接数据库后对表进行操作。

    注意:这里可能会出现几个问题,需要慎重处理:

    (1)内存问题:如果内存不够,则需要重新设置,本人使用的是运行时配置:

    也可以用另一种方式,在代码中配置,

    可参考:http://blog.csdn.net/qingyang0320/article/details/50787550。

    (2)数据库访问限制问题

    报错:java.sql.SQLException: null, message from server: “Host ‘xxx’ is not allowed to connect,该问题是由于本机的访问权限未开放,需要进行设置。

    可参考:http://blog.csdn.net/xionglangs/article/details/50385057。

    (3)mysql Driver依赖未添加报错

<dependency>
      <groupId>mysql</groupId>
      <artifactId>mysql-connector-java</artifactId>
      <version>5.1.25</version>
</dependency>

    结果:

    通过访问Spark web UI的地址:localhost:4040能够清楚的查看具体的spark参数,大功告成。

文章来源:

Author:海岸线的曙光
link:https://my.oschina.net/u/3747963/blog/1630593