人员、任务、进度、工时、周期、依赖关系 一目了然。无论项目大小、简单复杂都能轻松管理
我要推出一个为期一年的会员计划,这篇文章我想从会员计划介绍、面向人群、会员权益、会员定价四个方面来介绍下,希望大家理性消费,务必先看权益部分的内容是否是自己未来一年内要聚焦和关注的,然后再看定价是否满足自己当前的消费能力。
前段时间,音乐人包小柏用 AI 重现女儿的声音和形象,商汤科技创始人汤晓鸥被公司以数字人的形式现身年会,“AI 复活”走入现实。然而“AI 复活”展现出来的科技人文关怀,没几天就变味了。多位已故明星李玟、乔任梁、高以翔被“复活”,登上微博热搜,但这些网友擅自的复活遭到了明星亲属的极力反对,关于AI“复活”逝者,你怎么看?
我在这篇 ChatGPT 发布一周年的总结文章中,已经推荐了不少优质的信息源,但主要还是偏技术向,随着我自己的身份从纯研发角色转变为产品,我的信息源也对应做了一次更新,增加了非技术部分,经过两个月的迭代,基本还算满意,所以这篇文章来总结下。
写这篇文章的原因是我构建的 RAG 框架已经基本成型,现在只剩下最后一块拼图,即**评估模块**,这也是真正投入生产后,RAG 系统迭代的关键,本篇文章我将分享 3 种方案,第一种我自己跑出来的实践经验,第二种是比较成熟的框架RAGAs,通过定量指标来评估,最后一种是则是通过噪声、拒答、反事实、信息整合等四大指标来定性分析,来自论文《在 RAG 中对大语言模型进行基准测试》,大家可以作为参考结合起来设计自己的方案。
由于要为公司产品接入 AI 能力,且政策原因只能使用国内大模型,所以过去一个月我仔细阅读了一遍国内 6 家(阿里、百度、MiniMax、智谱 AI、MoonShot、百川智能,没试用字节和腾讯家的原因末尾总结有吐槽)大模型厂商文档,逐个测试了不同的 API,发现相同的功能各家的叫法又不一样,使用起来很混乱,所以才有了这篇文章,本文我将以 OpenAI 提供的 API 能力(因为个人项目一直在使用 OpenAI)为基准,从 GPTs 能力、插件能力、Assistants API
大家好啊,好久不见,我们都知道当前基于大模型构建的 Agent 能力极不稳定,而今年我司产品又在规划接入 Agent 能力,所以在引入之前,需要先设计一套测试框架,来看看各种场景下容错率是否能达到目标阈值,所以我调研了几种测试方案,本篇来总结下,大家有需求可以加我进群进一步讨论。
基于大模型的 Agent 基本组成应该包含规划(planning),工具(Tools),执行(Action),和记忆(Memory)四个方面,上一篇中重点讲了进行长记忆管理的 8 种方案,本节将从 Agent 的概念、ReAct 框架、示例、以及一些论文思路来具体聊下任务规划的话题,同时会辅以代码帮助理解,欢迎大家一起探讨。
如果说去年一年是自媒体的狂欢,还可以利用信息差赚知识付费和咨询费,那今年在技术普及已经差不多了,就要面对落地的挑战了,否则大多数人该怀疑这又是一场泡沫了,最近一个月,我自己的身份也从纯研发角色侧重为产品,虽然代码还在写,但关注重点不一样了,这篇文章我将从这一个月来的实践和调研的情况出发,尝试从个人角度阐述对 AI 产品经理的能力理解,以及对当下 toC 和 toB AI 产品落地现状的一些思考,欢迎大家一起探讨。
LangChain 在 0.1 版本发生了重要变更,官方还专门发了一篇博客,总体看下来可以概括为**聚焦核心,共建生态,轻装上阵,加速商业化**,我也在第一时间向官方申请试用了商业化产品,本篇文章从 LangChain 变更情况解读,商业化产品试用,以及类 LangChain 的 LLM 应用开发框架的发展三部分来谈谈。
ChatGPT 发布一周年了,切实改变了我的工作方式和职业路径,趁着周末写下这篇文章,我希望以一名普通程序员的视角,带大家回顾一下过去一年大模型领域的发展情况,以及个人的所思所想。文章会分为四个部分,从初次接触 ChatGPT 沉迷追 AI 新闻,到开始亲身实践,利用 LLM 进行一些有价值的工作,然后以开发者视角总结一年来大模型各个层面的发展,标志性的开源项目、基础模型服务商、中间层、以及体验不错的 LLM 产品,最后还想再浅谈一下对 AI 未来的一些展望!